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Abstract

This paper presents an integrated identification method to consider the uncertainty effect on modal
parameters for output-only system. The method is based on the time–frequency characteristics of the
wavelet transform (WT) and the capabilities of the bootstrap distribution in statistical estimation. For the
WT-only based identification method, the important issues related to identification accuracy such as modal
separation, end-effect, associated with the parameter selection of wavelet function based on Shannon
entropy, are given detailed investigations. The bootstrap procedure is then employed to evaluate the
uncertainty effects by providing confidence interval of the modal parameter statistically. The effectiveness
of the integrated method has been confirmed through numerical simulation and experimental test on a
bridge model.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There are numerous approaches that can be applied to extract modal parameters of structure
[1,2]. Traditionally, modal parameters are extracted by performing the reducing and curve-fitting
see front matter r 2005 Elsevier Ltd. All rights reserved.
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procedures either on series of measured frequency response function or on time response, such as
impulse response function and free-decay response. The frequency domain approaches based on
the discrete Fourier transform (DFT) have some drawbacks such as leakage, aliasing, requiring
large amounts of data or test for averaging, and rich frequency spectrum for the input signals [3].
Moreover, the DFT is commonly accurate for calculating the frequency content of a stationary
signal. Therefore when applied to a non-stationary signal, the DFT provides signal’s average
characteristics over the time-period, and smears its local behavior globally. Although the modified
version of the Fourier transform termed short-time Fourier transform (STFT) can resolve some of
the problems associated with non-stationary signals, it does not address all issues of concern [4,5].
For large-scale civil engineering structures such as bridges, towers, offshore platforms, etc. in

operating conditions, it is not suitable to excite the structure using artificial inputs and to measure
actual excitation, accordingly. Recently, the time-domain-based identification schemes particu-
larly in the case where no input but only response measurements are available have received
considerable attentions. The output-only based techniques include autoregressive moving average
vector (ARMAV) model [6], stochastic subspace identification (SSI) method [7], and the
eigensystem realization algorithm (ERA) [8,9]. One disadvantage of these approaches is that they
use a large number of important matrices, which require time-consuming computation. In
addition, the noise levels of the response data also have significant effects on the identification
accuracies.
In order to overcome the weakness of the Fourier-based approach in providing indirect or

incomplete information on capturing time-varying features of structure, some new tools such as
Wigner–Ville distribution, wavelet transform (WT) and Hilbert–Huang transform (HHT) capable
of yielding a time–frequency representation are developed to construct new frameworks for
system identification and damage detection [5,10–14]. The WT has the ability to decouple the
measured multicomponent signal to monocomponent signals in the form of complex-valued
signature via the popular Morlet wavelet, and then the identification scheme for single-degree-of-
freedom (sdof) system can be implemented to extract the modal parameters. It is important to
note that the time and frequency resolutions of the WT have significant impacts on the
identification accuracy, which needs to be clarified by theoretical analysis.
For the structure subjected to the ambient loading, the WT method is generally applied in

conjunction with the well-known random decrement technique (RDT) to identify the modal
parameters [12,13]. Note that the WT as well as the traditional schemes can only supply a single
estimate of the modal parameter for each time history, and the repeated measurements for the real
structure are also restricted. Moreover, due to the impacts of unmeasurable ambient excitation
sources, noise contamination, environmental variability, and measurement error, the ambient
excitation acted upon the real structure, in a strict sense, generally does not apply for the RDT’s
assumption that the unknown excitation forces are Gaussian white noise. Subsequently, the
uncertainty, to a certain extent, will cause possible estimation errors no matter what kind of
identification methods are adopted. Practically, due to the nature of the ambient excitation, a
statistical description of the identification procedure is appropriate to consider and assess the
uncertainty.
To make up for the inadequacy of the WT-only based modal identification, a statistical tool

termed bootstrap [15] is proposed to evaluate the effects of uncertainty according to the statistical
characteristics of the modal parameters. This paper is organized into 5 sections. Section 1 is
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introduction. In Section 2, a WT-only based modal identification method adopting modified
Morlet wavelet is performed with the special emphases on the time–frequency resolution and
optimal parameter selection of wavelet function. Section 3 proposes a bootstrap scheme to
consider the uncertainty effect. In Section 4, the integrated method is verified through numerical
simulation on a damped system with closely spaced modes and an experimental test on a bridge
model. Finally, the conclusions are presented in Section 5.
2. Wavelet transform-based modal identification

2.1. Modified complex morlet wavelet

The WT is a linear representation, which sums all time of the signal x(t) multiplied by scaled,
shifted versions of the mother wavelet cðtÞ in the form

W ða; bÞ ¼
1ffiffiffi
a
p

Z þ1
�1

xðtÞcn t� b

a

� �
dt, (1)

where ‘‘*’’ denotes the complex conjugation. The scale index a controls the stretch of the analysis
window and parameter b indicates the time shifting. The factor 1=

ffiffiffi
a
p

is used to ensure energy
preservation. The wavelet coefficient W(a, b) measures the similarity between the signal x(t) and
each wavelet function in the form of time–frequency representation. Hence, the dominant
frequency components of the signal create wavelet coefficients with prominent amplitudes and this
is the basis of the WT-based modal identification.
There are different types of real- and complex-valued wavelet functions for various purposes.

One of the most popular and widely used is the complex Morlet wavelet due to its capabilities in
time–frequency localization for analytical signal. In this study, the modified complex Morlet
wavelet function is used and formulated as

cðtÞ ¼
1ffiffiffiffiffiffiffi
pf b

p ej2pf ct � e�f bðpf cÞ
2

� �
e�t2=f b , (2)

where fb is the bandwidth parameter, fc is the central wavelet frequency, and j is the imaginary
unit. The dilated version of the Fourier transform of cðtÞ is given by

Cðaf Þ ¼ e�p
2f bðaf�f cÞ

2
� e�p

2f bððaf Þ2þf 2c Þ. (3)

Note that let f ¼ 0, the frequency response Cðaf Þ ¼ 0, which implies that the integral of the
mother wavelet cðtÞ over the entire time domain is zero. Hence, the mother wavelet function
satisfies the admissibility condition. Practically, when we assume

ffiffiffiffiffi
f b

p
f cX

ffiffiffi
2
p

; the term e�f bðpf cÞ
2

in Eq. (2) can be viewed as a negligible quantity [17], thus the approximate version of the modified
Morlet wavelet and its dilated Fourier transform are, respectively, expressed as

cðtÞ ¼
1ffiffiffiffiffiffiffi
pf b

p ej2pf cte�t2=f b , (4)

Cðaf Þ ¼ e�p
2f bðaf�f cÞ

2
. (5)
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Note that Cðaf Þ reaches the maximum value when af ¼ fc, which demonstrates that the localized
Fourier frequency f is determined by the parameters a and fc.

2.2. Modal parameter determination

Consider a linear damped multi-degree-of-freedom (mdof) system with n real modes, its free
decay response is given as

xðtÞ ¼
Xn

i¼1

Aie
�2pzif it cosð2pf ditþ yiÞ, (6)

where Ai is the amplitude of the ith mode, yi is the phase angle, fi is the ith undamped natural

frequency, f di ¼ f i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
is the damped natural frequency, and zi is the damping ratio.

By substituting Eqs. (4) and (6) into Eq. (1), the Morlet wavelet coefficients of the free decay
signal can be approximated by means of asymptotic techniques [10,11] as follows:

W ða; bÞ ¼

ffiffiffi
a
p

2

Xn

i¼1

Aie
�2pzif ibe�p

2f bðaf i�f cÞ
2
ejð2pf dibþyiÞ. (7)

By localizing a fixed value of the scale parameter a ¼ ai, the term e�p
2f bðaf i�f cÞ

2
obtains its

maximum value at ai ¼ fc/fi. In such cases, only the mode i related to the scale ai gives a significant
contribution to Eq. (7), while the other (n�1) modes appear to be negligible. Note that the quality
of above approximation is dependent on the coupling effects between modes. For the system with
not strong closely spaced modes, the wavelet coefficient at scale ai can be written in the form

W ðai; bÞ ¼

ffiffiffiffi
ai
p

2
Aie
�2pzi f ibejð2pf dibþyiÞ, (8)

which implies that the WT is capable of decomposing a multicomponent signal to single modes
and representing them in the form of complex-valued signals. Next by substituting t for b, Eq. (8)
can be rewritten in the form of time-varying amplitude Bi(t) and phase angle jiðtÞ.

W ðai; tÞ ¼

ffiffiffiffi
ai
p

2
Aie
�2pzif itejð2pf ditþyiÞ ¼ BiðtÞe

jjiðtÞ (9)

and applying logarithmic and derivative operators to Bi(t) and jiðtÞ, respectively, we obtain

ln BiðtÞ ¼ �2pzi f itþ ln

ffiffiffiffi
ai
p

2
Ai

� �
)

d ln BiðtÞ

dt
¼ �2pzi f i, (10)

djiðtÞ

dt
¼ 2pf di ¼ 2pf i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
. (11)

Consequently, the slopes of lnBi(t) and jiðtÞ can be combined to identify the natural frequency
fi and the damping ratio zi as follows:

f i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d ln BiðtÞ

dt

� �2

þ
djiðtÞ

dt

� �2
s ,

2p, (12)
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zi ¼ �
d ln BiðtÞ

dt

� ��
2pf i. (13)

In general, the linear least-squares fitting technique is applied to the wavelet phases and
amplitude curves for effective determination.
2.3. Resolution property

Because of the nature of the WT, the resolution properties having inevitable influences
on the identification accuracies of the modal parameters should be taken into account. A
research conducted by Kijewski and Kareem [12] investigated the impacts of modal
separation and end-effect on the time–frequency resolution and suggested guidelines for
parameter selection. This study extends their method from traditional Morlet wavelet to modified
Morlet wavelet, and particularly uses the Shannon wavelet entropy to select the optimum critical
parameters.
2.3.1. Time–frequency resolution

When discussing the joint time–frequency resolution, the Heisenberg uncertainty principle
provides a good performance indicator termed time–frequency resolution rectangle DtDfX 1

4
p to

evaluate the time–frequency representation [4]. For the modified Morlet wavelet adopting a
Gaussian function as described in Eq. (4), the resolution rectangle holds equality, i.e. DtcDf c ¼
1
4
p: Moreover, the frequency-domain standard deviation can be employed to measure a signal’s

frequency bandwidth by using characterization of time waveform and power spectrum [4].
Considering the resolution rectangle, the time and frequency resolutions of the modified Morlet
wavelet can be written as

Dtc ¼

ffiffiffiffiffi
f b

p
2

; Df c ¼
1

2p
ffiffiffiffiffi
f b

p . (14)

Note that the time and frequency resolutions of the WT are dependent on the mother wavelet
function [10]. Considering ai ¼ fc/fi and Eq. (14), one obtains

Dti ¼ aiDtc ¼
f c

f i

ffiffiffiffiffi
f b

p
2

; Df i ¼
1

ai

Df c ¼
f i

f c

1

2p
ffiffiffiffiffi
f b

p , (15)

which indicates that the parameters fb and fc can be adjusted to obtain appropriate time and
frequency resolutions.
More generally, from the viewpoint of modal separation, in order to separate two

closely spaced frequency components fi and fi+1 with a difference of Df i;iþ1 ¼ f iþ1 � f i and an
average of f i;iþ1 ¼ ðf i þ f iþ1Þ=2, by substituting Df i;iþ1 and fi,i+1 for Dfi and fi, respectively,
the frequency resolution shown in Eq. (15) can be rewritten to determine the separation Df i;iþ1 in
the form

Df i;iþ1Xð2aÞ
f i;iþ1

2p
ffiffiffiffiffi
f b

p
f c

, (16)
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which can also be employed to determine the ranges of the parameter fb and fc in the following
form: ffiffiffiffiffi

f b

p
f cXð2aÞ

f i;iþ1

2pDf i;iþ1

, (17)

where a is the parameter defining how much overlap is allowed between the adjacent Gaussian
windows of the modified Morlet wavelet is allowed. Generally, when a ¼ 1, the windows centered
at two frequencies will overlap to be inseparable. For traditional Morlet wavelet, Kijewski and
Kareem [12] suggested that a ¼ 2 is generally sufficient to distinguish two adjacent frequency
components, which however is considered in an empirical way. Note that increasing a indicates
the increase of

ffiffiffiffiffi
f b

p
f c; which however results in the decrease of time resolution. In this study, we

loose the threshold value down to a ¼ 1:5 so that in some severe cases a certain compromise can
be achieved between the time and frequency resolutions.
Another attention is the end-effect, which has inevitable influence on the quality of the wavelet

coefficients. Based on Kijewski and Kareem’s study [12], the regions of the two ends of the ith
modal response to be removed is determined by

DTi ¼ bDti ¼ b
f c

f i

ffiffiffiffiffi
f b

p
2

, (18)

where b is an integer value determined according to the desired accuracy level. It is seen that the
lowest frequency yields the maximum end-effect. In general, when bX4, the end-effect regions can
be sufficiently eliminated. Note that if DTipgT is predetermined to limit the range of the end-
effect, to guarantee sufficient signal segments for analysis, with Eq. (18) as a basis, the
corresponding

ffiffiffiffiffi
f b

p
f c should satisfy the following conditionffiffiffiffiffi

f b

p
f cp

2g
b

� �
Tf i, (19)

where g is practically set to be less than 0.4, which reveals that at least 20% of the signal should be
preserved for further analysis.
Thus, indications for the determining of the parameters fb and fc considering the modal

separation in the frequency domain and the end-effect segments in the time domain were
constructed as given in Eqs. (17) and (19).

2.3.2. Parameter selection
In the case of determining the values of

ffiffiffiffiffi
f b

p
f c; it is obtained that

ffiffiffiffiffi
f b

p
f cX

ffiffiffi
2
p

is easy to be
satisfied and thus combining Eq. (17) with Eq. (19), the product

ffiffiffiffiffi
f b

p
f c satisfies the following

inequality:

ð2aÞ
f i;iþ1

2pDf i;iþ1

p
ffiffiffiffiffi
f b

p
f cp

2g
b

� �
Tf i, (20)

which demonstrates that
ffiffiffiffiffi
f b

p
f c should be chosen within an interval so that a compromise could

be made between frequency and time resolutions. For an analytical signal, the parameters T, fi,
fi,i+1 and Df i;iþ1 are known or predetermined by Fourier transform. As stated in Section 2.3.1,
when assumed a ¼ 2, b ¼ 4, g ¼ 0:4, the closely spaced modes can be entirely separated, further,
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the end-effect regions can be also fully eliminated. It is important to note that, when the sampling
time T is very short or there exist very closely spaced modes, Eq. (20) appears to be unsolvable. In
such cases, we have to decrease the parameters a, b although the time and frequency resolutions
decrease simultaneously. Another consideration is that because

ffiffiffiffiffi
f b

p
f c is within an interval, there

exist numerous pairs of fb and fc for selection. Practically, it is necessary to introduce some other
criteria to select optimum values of fb and fc from the candidates. In this study, the minimum
Shannon entropy criterion [16] was applied to consider the diversity of the analytical signal.
Assume that W(ai, t), i ¼ 1; 2; . . . ;M is a set of wavelet coefficients. The Shannon wavelet

entropy is calculated by

E ¼ �
XM
i¼1

di log di, (21)

where

di ¼
W ðai; tÞ
�� ��PM
j¼1W ðaj; tÞ

. (22)

This criterion measures the information of each WT. In practical application, the entropy E(fb,
fc) is calculated for a range of values of fb and fc which should first meet the requirements of Eq.
(20). The optimum value is the pair leading to the minimum value of the wavelet entropy E of the
wavelet coefficients matrix W(a, t).
3. Bootstrap-based uncertainty estimation

In practical applications of modal identification, the WT method as well as the traditional
schemes most often supplies a single estimate of the modal parameter for each time history, and
the repeated measurements for the real structure are also restricted. Hence, there is no adequate
information for appropriate statistical description to consider and evaluate the impacts of
uncertainties inherent on identification accuracies. Practically, these uncertainties intrinsic derived
from the noise level, environmental variability, and measurement errors, are worth investigating
as this may lead to a deeper understanding of the structural dynamics properties.
Due to these limitations, a simple but effective bootstrap scheme, capable of providing effective

statistical inferences without the restrictions of the usual normal-theory assumptions and large
enough samples, is proposed in conjunction with the WT to consider the influences of uncertainty
on modal parameters.
3.1. Outline of the bootstrap theory

The bootstrap theory pioneered by Efron [15] was originally introduced to evaluate the
statistical accuracy by calculating the confidence intervals of the random variables with unknown
probability distribution and limited data or samples. The typical bootstrap method can be
described as follows.
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Suppose we observe a random independent sample X ¼ ðx1;x2; . . . ; xnÞ drawn from an
unknown identical distribution F and a statistic inference of interest ŷ ¼ sðX Þ: By randomly
sampling with replacement from the original data, a bootstrap sample X � ¼ x�1; x

�
2; . . . ;x

�
n

� 	
and the corresponding estimator ŷ

�
¼ s X �ð Þ can be obtained. After replicating B times the

bootstrap operation, B numbers of bootstrap ensemble ŷ
�

1; ŷ
�

2; . . . ; ŷ
�

B

� �
are generated.

Finally, from the histogram of the bootstrap ensemble, the probability density function can be
determined and the standard deviation ŝ�y of the values ŷ

�

1; ŷ
�

2; . . . ; ŷ
�

B is the estimate of the standard
error of s(x), i.e.

ŝ�y ¼
1

B� 1

XB

b¼1

ŷ
�

b � ȳ
�

� �2" #1=2
, (23)

where

ȳ
�
¼

1

B

XB

b¼1

ŷ
�

b. (24)

The bootstrap percentile method is used to define the confidence interval. Let ŷ
�ðpÞ

B be the
(100 � p)th empirical percentile of the ŷ

�

b values, i.e. the (B � p)th value in the order list of the B

replications of ŷ
�
: Likewise let ŷ

�ð1�pÞ

B be the 100 � (1�p)th empirical percentile. The approximate
percentile confidence interval at level 1�2p is then determined as

ŷ%;low; ŷ%;up

h i
� ŷ

�ðpÞ

B ; ŷ
�ð1�pÞ

B

h i
. (25)

If the number of bootstrap B is large enough, the bootstrap histogram will become normal
shaped, and thus an accurate confidence interval can be obtained.

3.2. Bootstrap schemes in WT-based parameter identification

When dealing with the measurement signal, different statistical analyses of the time series
and dynamic models through the use of bootstrap have been derived in order to obtain
accurate results of the modal parameters. Bittanti and Lovera [18] proposed the application
of the bootstrapping residues methods to the problem of evaluating model uncertainty in the
framework of the input/output subspace identification models. Kijewski and Kareem [19]
presented a basic bootstrap approach to assess the quality of the system identification by
providing surrogate estimates of damping and natural frequency to generate useful statistics and
confidence intervals.
For the present purpose, in the case of free decay signal, assume S experimental tests are

implemented and B bootstrap samples are generated. Based on the bootstrap procedure
described in Section 3.1, we can acquire the bootstrap distribution and confidence interval of
the modal parameter. For output-only system, in general, the well-known RDT is preprocessed
to extract the free decay responses from the ambient vibration data for further identification.
In this paper, based on the basic form of the bootstrap, a procedure for the estimation of
standard error and confidence interval of the modal parameter from output-only data is
presented in the framework of the WT-only based modal identification scheme. As shown in
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Fig. 1. Bootstrap scheme for WT-based modal identification.
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Fig. 1, S random decrement (RD) segments satisfying the triggering condition are extracted from
the measured response and form a sample population. Each bootstrap sample has Nb RD
segments, formed by sampling with replacement Nb times from S RD sample population. Then,
each bootstrap sample is averaged to form a smoothed RD signal for WT-based parameter
identification. This procedure is repeated B times to generate B replicates of the modal
parameters. Finally, the statistical analysis based on Eqs. (23)–(25) is implemented to estimate the
standard error and confidence interval of the modal parameter. It is important to note that the
bootstrap method deals correctly only with independent and identically distributed random data
set. Generally, each RD segment satisfying a triggering condition is randomly drawn from the
measured vibration response, thus it is readily extensible to consider it as an independent random
sample.
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4. Applications

4.1. Numerical simulation

The WT-based modal identification in conjunction with the bootstrap method is first tested on
a simulated 3dof damped system with two closely spaced modes. The parameters based on Eq. (6)
are configured as follows: f 1 ¼ 1:0Hz; f 2 ¼ 1:06Hz; f 3 ¼ 2:0Hz; zi ¼ 0:01; Ai ¼ 1:0; yi ¼ 0
ði ¼ 1; 2; 3Þ; sampling frequency f s ¼ 20Hz and sampling time T ¼ 60 s. Obviously, for these two
closely spaced modes, f 1;2 ¼ 1:03Hz, Df 1;2 ¼ 0:06Hz.
To ensure sufficient time-frequency resolution, a ¼ 1:5, b ¼ 4, and g ¼ 0:4 are assumed for

further analysis. By substituting all the parameter values into Eq. (20), we obtain
8:2p

ffiffiffiffiffi
f b

p
f cp12:0: Fig. 2(a) uses two vertical axes, left vertical axis representing variation of

minimum wavelet entropy E via Eq. (21) and right one representing variation of the productffiffiffiffiffi
f b

p
f c; to get an insight in the relationships among the parameters. It is seen that all the values offfiffiffiffiffi

f b

p
f c are within the interval [8.2 12.0] when fc41.5, particularly when f c ¼ 2:5, the wavelet

entropy E obtains its minimum value. Fig. 2(b) presents the variations of wavelet entropy with
respect to fb when f c ¼ 2:5. It is observed that there exists an optimum value of f b ¼ 17 leading to
minimum wavelet entropy. The corresponding results of modal separation, phase angle jðtÞ and
logarithm of amplitude ln[B(t)] are displayed in Fig. 3. It is seen that these two closely spaced
modes are fully separated, and the end-effect regions can be clearly indicated and eliminated when
b is set to be 4. Moreover, it is obviously found that the end-effect for low-frequency mode has
more serious impact than that for the high-frequency mode.
Table 1 gives a comparison of the damping ratio errors with different parameter configurations.

Note that the noise contamination is generally inevitable. The simulated signal corrupted by noise
level Ri is defined as xiðtÞ ¼ xðtÞð1þ rRiÞ, where r is a normally distributed random variable with
zero mean and unit variance (‘‘standard noise’’). From Table 1, it is observed that when a ¼ 1, the
frequency resolution is lower, and these two closely spaced modes cannot be identified. Increasing
a results in increase of the frequency resolution and decrease of the time resolution. When a ¼ 3
and b ¼ 4, the length of the end-effect region (32.8 s for the first mode and 31.0 s for the second
mode) is even beyond the half-length of the analytical signal (30 s), which makes it fail to identify
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Fig. 3. (a) The WT-based modal separation for the first mode (top), second mode (middle), and third mode (bottom);

(b) the phase angle jðtÞ and (c) the semi-logarithm of amplitude ln[A(t)] for the first mode (left), second mode (middle)

and third mode (right). Dotted vertical lines demarcate the end-effect regions when b ¼ 4.

Table 1

Variation of damping ratio error (%) with different parameter configurations

Mode Noise level R Noise level R Noise level R

DTi (s) Df i (Hz) 0% 40% DTi (s) Df i (Hz) 0% 20% 40% DTi (s) Df i (Hz) 0% 20% 40%

f b ¼ 4:78, f c ¼ 2:5 f b ¼ 17, f c ¼ 2:5 f b ¼ 43:0, f c ¼ 2:5

a ¼ 1, b ¼ 0 a ¼ 1:89, b ¼ 0 a ¼ 3, b ¼ 0

1 0.00 0.029 — — 0.00 0.015 9.47 9.46 8.76 0.00 0.010 15.9 17.7 17.1

2 0.00 0.031 — — 0.00 0.016 8.66 8.83 8.76 0.00 0.010 8.61 8.53 8.48

3 0.00 0.058 2.83 13.7 0.00 0.031 4.42 6.83 19.1 0.00 0.019 9.36 8.44 8.73

a ¼ 1, b ¼ 4 a ¼ 1:89, b ¼ 4 a ¼ 3, b ¼ 4

1 10.9 0.029 — — 20.6 0.015 1.42 2.28 7.29 32.8 0.010 — — —

2 10.3 0.031 — — 19.4 0.016 0.64 1.92 3.18 31.0 0.010 — — —

3 9.48 0.058 0.02 23.5 10.3 0.031 0.02 1.72 9.62 16.4 0.019 0.08 2.49 7.51

B.F. Yan et al. / Journal of Sound and Vibration 291 (2006) 285–301 295
the system. Further, when the impacts of end-effect are not considered (b ¼ 0), there are
discrepancies in the identified damping ratios no matter whether the noise level is higher or lower.
Note that in the cases of the optimum values of f b ¼ 17, f c ¼ 2:5 (the corresponding a is equal to
1.89) for modal separation and b ¼ 4 for fully considering the end-effect, when the noise level is
lower, the excellent identification results can be obtained. However, the higher noise level such as
40% yields poor identification results. For instance, the damping ratio error of the third mode
increase to 9.62%.
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Table 2

Statistical analysis for damping ratio estimation using bootstrap scheme

a ¼ 1.89 b ¼ 0 S ¼ 50 B ¼ 1000 a ¼ 1.89 b ¼ 4 S ¼ 50 B ¼ 1000

R ¼ 0 R ¼ 40% R ¼ 0 R ¼ 40%

Mode (i) zi (%) sðziÞ
a

(%)
zbooti

b

(%)

CoVi
c

(%)

95% Bootd

(%)

zi (%) sðziÞ

(%)
zbooti

(%)

CoVi

(%)

95% Boot (%)

1 0.905 1.81E-3 0.905 0.201 (0.902, 0.908) 0.986 5.20E-3 0.977 0.532 (0.969, 0.986)

2 0.913 2.01E-3 0.913 0.222 (0.909, 0.916) 0.994 5.58E-3 0.989 0.564 (0.980, 0.998)

3 0.956 1.11E-2 0.939 1.181 (0.922, 0.957) 1.000 1.27E-2 0.976 1.298 (0.956, 0.997)

aStandard deviation of damping ratio.
bBootstrap mean damping ratio.
cCoefficient of deviation, and CoVi ¼ sðziÞ=z

boot
i .

d95% Confidence interval of damping ratio.
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Consequently, it is seen that in the framework of WT-only based method the noise level has
inevitable influences on the identification accuracies no matter whether the modal separation and
end-effect are considered or not.
On the other hand, because of the randomness of the noise pollution, even if all the time

histories are contaminated by the same noise level, each of the estimated modal parameters has a
little discrepancy and is subject to a certain distribution. The bootstrap method is presented for
statistical inference.
Let us consider a sample population containing S ¼ 50 signal elements simulated by each

introducing 40% noise level to the above-proposed simulated signal. Then B ¼ 1000 bootstrap
samples are generated from the given sample population. The optimum parameters for the WT-
based identification are configured as f b ¼ 17, f c ¼ 2:5, a ¼ 1:89. The statistical inference results
for damping ratios are illustrated in Table 2. It is observed that, when b ¼ 0, i.e. not removing the
end-effect segments, the bootstrap mean damping ratios zboot1 ¼ 0:905% for the first mode and
zboot2 ¼ 0:913% for the second mode are, respectively, equal to z1 and z2 where noises are not
introduced. Moreover, note that in the case of b ¼ 4, i.e. the end-effect regions are entirely
eliminated, the bootstrap mean damping ratios are in agreement with those without noise
contamination. Consequently, compared with Table 1, the bootstrap method has the capability to
make a statistical inference from the limited samples, which obviously implies that it supplies
more valuable identification information than the WT-only based method. Another advantage is
that the confidence interval of modal parameter can be used to indicate the impacts of
uncertainty.
It is important to note that, although the bootstrap can draw valid statistical inferences, its

performance is still dependent on the quality of the RD data and the effectiveness of the WT-only
based identification method. For instance, when the end-effect is not considered, though the
bootstrap method can indicate the uncertainty, for the first mode, there still exists greater relative
error up to about 9.5% between the bootstrap mean value and the theoretical value. However, in
the case that the end-effect is entirely removed when b ¼ 4, there exists only about 2.3% relative
error even when the noise level increases to 40%.
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Fig. 4. (a) Experimental setup; (b) sensor placement (unit: cm) and (c) rope gearing system.
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4.2. Experimental verification

4.2.1. Experimental setup
The bridge model made up of polycarbonate plastic is 400 cm long, 31 cm wide, and 7 cm high.

As represented in Fig. 4, the cross-section of the beam is a box girder with five rooms. Two bumps
and two vehicles each with a 10N weight are configured to simulate the traffic loading as an
ambient random excitation to the bridge model. A rope gearing system is set to pull these two
vehicles with an interval of 100 cm along the bridge deck back and forth with different running
speeds. To measure the vibration responses, seven piezoresistive accelerometers (flat frequency
response: 0–50Hz) are installed evenly at the side surface of the 1

8
points of the beam. The DC-

104R is used to acquire and record the vibration response data. The sampling frequency of the
digital recorder is fixed at 100Hz, the sampling time is 280 s.

4.2.2. Results

An example of acceleration time history at the location of 2] (see Fig. 4) is plotted in Fig. 5(a).
The RDT is applied to the time history to obtain the RD signature. In this case, the length of RD
signature is determined as 1024 points (10.24 s), a triggering level of [1.2s+1] (s: standard
deviation of the time history) is selected, and the number of triggering points is set to be S ¼ 2776.
The RD signature is shown in Fig. 5(b). It is seen that the noise level appears to be severe. From
the impact test, it is observed that there exist three well-separated modes around 3.8, 15.2 and
32.5Hz. Hence, it is easy to consider the time–frequency resolution properties of the RD
signature. Fig. 6(a) presents the relationship between the wavelet entropy E and two parameters fb

and fc. By Eq. (20), it is calculated that all the values of
ffiffiffiffiffi
f b

p
f c are within the interval [0.53 7.94]

when f cX0:5, particularly when f c ¼ 1:0, the wavelet entropy E obtains its minimum value.
Fig. 6(b) presents the variations of wavelet entropy with respect to fb. It is clear that an optimum
value of f b ¼ 17 leads to minimum wavelet entropy. The phase angle jðtÞ and semi-logarithm of
amplitude ln[B(t)] are plotted in Figs. 5(c) and (d). It is important to note that, in the case of
impact test, for the second and the third modes, only the first 5 and 2 s of the separated modal
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signal with relatively linear and stable characteristics are, respectively, extracted as the analysis
length. For comparison, the same length is set for the ambient vibration test.
From Figs. 5(c) and (d), it is observed that the semi-logarithms of amplitudes are capable of

indicating the end-effect regions. Notice that some segments of them are far away from linearity
due to the poor quality of the RD signature. One of the reasons is that, strictly speaking, the
traffic loadings simulated by two vehicles with different running speeds and impacts derived from
two bumps do not properly satisfy the assumption of white noise, and further, the effects of noise
contamination are also very high. Hence in the process of RDT, the random part of the random
response cannot be averaged to a zero vector, which results in the deterministic part to be
preserved as a free-decay response contaminated by inevitable noise.
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Table 3

Overview of the parameter identification results for bridge model test

Modal parameters End-effect Confidence interval (95% boot)

Mode Frequency (Hz) Damping ratio (%) DTL (s) DTR (s) Frequency (Hz) Damping ratio (%)

Impact test (sampling frequency: 100Hz; sampling time: 10.24 s)

1 3.878 1.122 2.98 2.98 — — — —

2 15.625 0.751 0.76 5.24 — — — —

3 34.485 0.784 0.36 8.24 — — — —

Ambient vibration test (Sampling time: 280 s; RD signature: 10.24 s)

1 3.846 1.090 2.10 2.10 — — — —

2 15.134 0.479 0.51 5.24 — — — —

3 32.525 0.758 0.24 8.24 — — — —

Statistics of bootstrap replications of modal parameters based on ambient vibration test (Nb ¼ 2500; B ¼ 1000)

1 3.842a 1.093b 2.10 2.10 [ 3.540, 3.932] [0.552, 1.742]

2 15.161a 0.807b 0.51 5.24 [15.066,15.254] [0.612, 1.041]

3 32.434a 0.632b 0.24 8.24 [32.195,33.047] [0.463, 0.823]

aBootstrap mean natural frequency.
bBootstrap mean damping ratio.
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The bootstrap scheme shown in Fig. 1 is employed to consider uncertainty. Each bootstrap
sample containing Nb ¼ 2500 elements is randomly sampled from S ¼ 2776 RD samples, and
B ¼ 1000 bootstrap replicate samples are generated for further statistical analysis. The histograms
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of the bootstrap estimation results for modal parameters are displayed in Fig. 7. Note that the
distributions of the estimated natural frequencies are concentrated, whereas for the damping
ratios, the distributions are more scattered and generally in accordance with the normal
distribution. Table 3 gives the comparisons of the identification results derived from the impact
test and ambient vibration test considering the end-effect. It is observed that the WT-only based
method is effective for the estimation of natural frequency, however, for the damping ratio
estimation, due to the poor quality of the RD signature, the estimated damping ratio 0.479% for
the second mode is even beyond 95% confidence interval [0.612%, 1.041%] offered by bootstrap
scheme. Furthermore, the bootstrap mean natural frequencies and damping ratios are,
respectively, close to those obtained by impact test with relative higher identification accuracies.
In addition, it is important to note that, due to the influences of vehicle weights, the natural
frequencies estimated by the ambient vibration test are smaller than those based on the
impact test.
5. Conclusions

In this contribution, an integrated identification method based on WT and bootstrap theory has
been proposed for considering uncertainty effect on modal parameter.
It has been revealed that, by carefully considering the influences of modal separation, end-effect

and parameters of wavelet function on identification accuracies, the WT-only based method is
very suitable for identifying system with closely spaced modes. Moreover, it has been shown that
the proposed bootstrap method is capable of making up the inadequacy of the WT-only based
method when dealing with uncertainty.
The integrated procedures have been applied to a numerical simulation and a bridge model test

giving satisfactory results of modal parameter estimation. Particularly for the output-only system
with poor quality of RD signature, the bootstrap scheme offers statistical information such as
bootstrap mean value and confidence interval of modal parameters, and the accuracy of the
integrated method in considering uncertainty effect is remarkable.
Further work will place emphases on the parameter selection and model selection for the

bootstrap scheme and on the test for the real bridges. Another interest is that in the
implementation of the bootstrap to the RD signature, in a strict sense, the RD segments do not
entirely satisfy the condition that each of them has to be an independent and identically
distributed sample. Thus the methods for overcoming this limitation will be the topic of future
investigation.
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